Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0251523, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962362

RESUMEN

IMPORTANCE: Urinary tract infection (UTI) is a global health issue that imposes a substantial burden on healthcare systems. Women are disproportionately affected by UTI, with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis, a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may be involved in E. faecalis survival in the urinary tract.

2.
Microbiologyopen ; 11(2): e1273, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478284

RESUMEN

The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.


Asunto(s)
Bacteriófagos , Enterococcus faecalis , Antibacterianos , Bacteriófagos/genética , Enterococcus faecalis/genética , Genoma Viral , Genómica , Humanos
4.
Access Microbiol ; 3(3): 000214, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34151166

RESUMEN

Enterococcus faecalis and E. faecium are Gram-positive bacteria that normally inhabit the human gastrointestinal tract. They are also opportunistic pathogens and can cause nosocomial infection outbreaks. To prevent the spread of nosocomial infections, hospitals may rely on screening methods to identify patients colonized with multidrug-resistant organisms including vancomycin-resistant enterococci (VRE). Spectra VRE agar (Remel) contains vancomycin and other medium components that select for VRE and phenotypically differentiate between E. faecalis and E. faecium by colony colour. We obtained 66 de-identified rectal swab cultures on Spectra VRE agar that were obtained during routine patient admission surveillance at a hospital system in Dallas, Texas, USA. We analysed 90 presumptive VRE from 61 of the Spectra VRE agar cultures using molecular and culture methods. Using ddl typing, 55 were found to be E. faecium and 32 were found to be E. faecalis . While most of the E. faecium were positive for the vanA gene by PCR (52 of 55 strains), few of the E. faecalis were positive for either vanA or vanB (five of 32 strains). The 27 E. faecalis vanA- and vanB-negative strains could not be recultured on Spectra VRE agar. Overall, we found that Spectra VRE agar performed robustly for the identification of vancomycin-resistant E. faecium , but presumptive false positives were obtained for vancomycin-resistant E. faecalis .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...